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ABSTRACT

A cyclic algebra (K/F,0,a) of degree n has property D(f) if it decom-
poses as a tensor product of a cyclic algebra of degree e = % containing
L (the fixed subfield under 6¢) and a cyclic subalgebra of degree f con-
taining an f-th root of a. Although D(2) holds for every cyclic algebra of
degree 4 and exponent 2, D(p) fails for Brauer algebras of degree p? and
exponent p, and D(2) fails for Brauer algebras of degree 8 and exponent
2. Using this, one fills the gap in [6, Theorem 4] and [7, Theorem 7.3.28),
to show that the example given there is indeed tensor indecomposable of
degree p? and exponent p. An easy ultraproduct argument provides an
example containing all p* roots of 1, for all k.
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Introduction
The aim of this paper is to investigate the possible decompositions of cyclic
division algebras into tensor products of cyclic subalgebras. More precisely, let
K/F be a cyclic field extension of degree n and let o be a generator of the Galois
group Gal(K/F). For any element a € F*, the cyclic algebra (K/F,0,a) is
defined as

(K/F,0,0)=K®Kz® - & Kz""!

where 2 is an indeterminate subject to the following relations:

zk =o(k)z for k € K,

zZ 5 =aq.

This algebra is central simple over F of degree n (i.e. dimension n?). See {7] or
(5, §30] for background information on cyclic algebras.
If n = ef, the element z° centralizes the subfield L C K elementwise invariant

under ¢, and the cyclic algebra (K /F, o, a) contains the commutative subalgebra
L(ze) ~L®p F(Ze) ~LQrF ({/E) .

We say that the cyclic algebra (K/F,o,a) has property D(f) if it decomposes
into a tensor product of a cyclic subalgebra of degree e containing L and a cyclic
subalgebra of degree f containing an f-th root of a:

(K/F,0,a)~ (L/F,0,b)®F (M/F,T,a)

for some b € F* and some cyclic extension M/F of degree f.

Standard arguments reduce investigation of property D(f) to the case where
the degree n is a power of a prime (see Proposition 3 below). We show that
property D(f) is related to the existence of cyclic splitting fields of a particular
type for certain cyclic algebras (see Proposition 4} and that property D(2) holds
for every cyclic algebra of degree 4 and exponent 2 (see Proposition 6). Our
main result (Theorem 10) is that certain cyclic division algebras constructed
by Brauer [2] yield examples of algebras of degree p? and exponent p which do
not have property D(p) for p any odd prime, and of algebras of degree 8 and
exponent 2 which do not have property D(2). In the last section, these algebras
are used to produce indecomposable division algebras of prime exponent. For

any odd prime p, we construct indecomposable division algebras of degree p? and
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exponent p over a field of characteristic zero containing a primitive p-th root of
unity. An ultraproduct construction yields examples where the base field contains
a primitive p™-th root of unity for all integer n.

1. Cohomological formulation of property D(f)

Let F be an arbitrary field. Fix some separable closure F, of F and let I'p =
Gal(F,/F) denote the absolute Galois group of F. Recall that the Brauer group
Br(F) is isomorphic to the second cohomology group H%(I'r, F*) under an

isomorphism induced by the crossed-product construction:
A: H*(Tr, FX) 5 Br(F).
Let X(F) denote the character group of I'p:
X(F) = Hom(T'r,Q/Z) = H*(T'p, Z).

A character x € X(F) of order n takes values in the subgroup (1Z)/Z c Q/Z
and defines a cyclic extension K/F of degree n consisting of the elements of F,
which are fixed under the subgroup ker x C I'p; moreover, if v € I'p is such that
x(7) = 1/n € Q/Z, then the image of v in I'r/ ker x = Gal(K/F) is a generator
o of Gal(K/F). For any a € F* = H(Tp, FX), the cup-product

xUae€ Hz(FF,st)

corresponds to the Brauer class of the cyclic algebra (K/F,0,a) under the
isomorphism A.

If n = ef, the character fx has order e; it defines the fixed subfield L C
K under o°. Therefore, the main property quoted in the introduction can be
restated as follows:

for x € X(F) and a € F*, the cup-product x U a satisfies property
D(f) if there is a decomposition

(1) xUa=fxUb+6Ua
for some b € F* and some 6 € X(F) of order f.

PROPOSITION 1: The cup-products x U a which have property D(f) are killed
by the least common multiple m of e and f. Ife and f are relatively prime, then
every cup-product x U a has property D(f).
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Proof: Since m kills both terms on the right-hand side of (1), it also kills the
left-hand side. If e and f are relatively prime, then there are integers e/, f’ such
that ee’ + ff' = 1. Every cup-product x U a may then be decomposed as

an:foaf’-l-(ee'x)Ua. [ |

We next observe that the condition that the character 6 in (1) has order f can
be weakened to: f6 =0.

PROPOSITION 2: Let x € X(F') be a character of order n and a € F*. If
(2) xUa=fyub+6Ua

for some b € F* and some § € X(F) such that f6 = 0, then x U a satisfies
property D(f).

Proof: Let f’ be the order of the character 6 in (2); then f’ divides f. Suppose
f=p3---p* and f' =pl*---pr~ are the prime factorizations of f and f’. We
then have af < o; foralli=1,...,7. Let

p; “in{x —0) if o < a;,
P = e 1
0 if a; = a.

If o < a;, then p;1né = 0, hence
(3 k3
pf“"lwi = pi_lnx # 0.

Therefore, the order of ¥; is p{* in this case. Moreover, multiplying both sides
of (2) by p; “n, we get
p; ¥n(x—0)Ua =0,

13

hence
P;Ua=0 fori=1,...,r.

Therefore, 8 = 11+ - -+, 46 has order f and satisfies #’Ua = 8Ua. Substituting
6’ Ua for U a in (2), we see that x U a satisfies property D(f). 1

The next proposition yields the reduction to the prime power degree case
announced in the introduction. Suppose n = njng where n; and ns are rela-
tively prime. For e, f such that ef = n, consider the greatest common divisors:

€1 = ng(e’nl)’ fl = ng(fa nl)?
€3 = ng(e’ n2)7 f2 = ng(fa n2),
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so that
ni=eifi and ng=-esfs.
Let my1,mo € Z be such that nym; + nymgy = 1.

PROPOSITION 3: For any character x € X(F) of order n, set
X1 =mngmex  and  xa =mymay,

so that x; € X(F) has order n; and

X = X1+ X2

For a € F*, the cup-product x U a has property D(f) if and only if x1 U a has
property D(f1) and x2 U a has property D(fs).

Proof: Suppose first x U a has property D(f) and consider a decomposition
xUa= fxyUb+0uUa

for some b € F* and some 6 € X (F) such that f6 = 0. Multiplying both sides
of this equality by nom, (resp. by nim;), we get

x1VUa=fixub2+6,Ua (resp. xz2Ua = faxa UbMt +6,Uq)

where 61 = namof € X(F) is such that fi6; = 0 and 6, = nym;0 € X(F)
is such that fo6; = 0. Therefore, x; U a has property D(f;) and x5 U a has

property D(f2).
Conversely, if a € F* is such that x; U a has property D(f1) and x2 U a has
property D(f2), then

(3) x1Ua= fixiUbh+6,Ua and xeUa= faxaUbs +62Ua

for some b;,b2 € F* and some 6,,8; € X(F) such that f16, = f26, = 0. We
have
fix1Ub3' =nix1 Uby =0,

hence, multiplying by fomy:
(4) fxaubi™ =0.

On the other hand, since nym; +nama = 1 we have x1 = namax; = fa(eama)xi,
hence
fix1Ub = fxaubp™.
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Taking (4) into account, it follows that

lel U bl — le U bizmzb?ml_
Similarly,

f2X2 U b2 — fX2 U bim’nzb;l‘ﬂu’

hence, adding the two equations in (3), we get
xVUa= fxubp™bz'™ + (61 +02)Ua.

Since f(6; +62) = 0, this relation shows that x Ua satisfies property D(f). |

2. Cyclic splitting

As in the introduction, we denote by K/F a cyclic field extension of degree n
and by L the unique intermediate subfield such that [K : L] = f, [L: F] =e.
Assume f # 1,n. In view of Proposition 3, we further assume n is a power of a
prime p.

PROPOSITION 4: Let a € F*. If the cyclic algebra (K/F,o,a) has property
D(f), then every cyclic algebra (M/F,T,a) of degree dividing f is split by a
cyclic extension K'/F of degree n containing L as an intermediate extension.

Proof: Let x € X(F) denote the character of order n such that
A(xVa)=(K/F,0,a) in Br(F).

Since property D(f) is assumed to hold for (K/F,c,a), or equivalently for x Ua,
we have
(5) xUa=fxub+0uUa

for some b € F* and some 8 € X (F) such that f6 = 0.
For any ¢ € X(F) such that fyp = 0, let X' = x — 0+ ¢ € X(F). Since
f0 = f¢ =0, we have
5 =1Ix
since n is a prime power, it follows that x’ has order n, hence it defines a cyclic
extension K’/F of degree n containing L. Moreover, from (5) it follows that

(x—0)Ua=fx'Ub=x’Ubf,
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hence
YpUa=x Uab™’.

Therefore, A( U a) is split by K'. 1

Note that the converse of Proposition 4 does not hold: if F is a local field,
a € F is a uniformizing parameter and L/F' is the (unique) unramified extension
of degree e, then every cyclic algebra (M/F, 1, a) of degree dividing f is split by
an extension of degree f of L which is cyclic over F, namely by the unramified
extension K/F of degree n (see [8, Chapitre 12, §2]). However, (K/F,a,a) does
not decompose, since its exponent is equal to its degree.

3. Algebras of degree 4

The aim of this section is to show that every cyclic algebra of degree 4 and
exponent 2 has property D(2). In the case where the characteristic is different
from 2, this property also follows from general results concerning algebras of
degree 4 and exponent 2: see [3, Proposition 5.2].

If the characteristic of the base field F' is different from 2, then for a,b € F* we
denote by (a,b)r the quaternion algebra generated by two elements 7, j subject
to

?=a, gi=b  ji=-—ij

If the characteristic of F' is 2, then for a € F and b € F* we denote by [a,b)F
the quaternion algebra generated by two elements 4, 7 subject to

p)=i"—i=a, j=b  ji=ij+j

LEMMA 5: Let L/F be a quadratic field extension. For every character ¢ € X (L)
of order 2 and every x € L* there exist § € X(F) and y € F* such that 20 = 0
and

(¥ +resy/p(0)) L (zy) = 0.

Proof: We consider separately the cases where char. F' # 2 and char. F = 2.

If char. F # 2, the cup-product 1 U = represents a quaternion algebra (£, ),
for some £ € L* such that kert) = Gal(F,/L(+/€)). We then have to show that
there exist f,y € F* such that (£f,zy)r is split. If z € F*, we may choose
f =1,y =z; similarly, if £ € F* we may choose f ={,y=1. If 2,/ & F* we
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may find f,y € F* such that {f + xy = 0 or 1, since the dimension of L over F
is 2. The elements f,y then satisfy the required conditions.

If char. F = 2, the cup-product 9 U x represents a quaternion algebra [¢,z)y,
for some £ € L such that ker ¢ = Gal(F,/F(p~1(£))); we have to show that there
exist f € F, y € FX such that [{ + f,zy), is split. If z € FX, we may take
f =0,y =c; similarly, if f € F we may take f =¢, y=1. If z,£ ¢ L, then 1,/
is a basis of L over F, hence we may find f € F, y € F* such that £ = f + zy.
Then [+ f,zy)L = [ry, zy)L is split. ]

PROPOSITION 6: Property D(2) holds for every cyclic algebra of degree 4 and
exponent 2.

Proof: Let x € X(F) be a character of order 4 and let a € F'*. Let also L denote
the quadratic field extension of F associated with 2. If x U a has exponent 2,
then 2y U a = 0, hence a is a norm from L: let a = Ny /p(x) for some z € L.
The lemma shows that one can find 8 € X(F), y € F* such that 26 = 0 and

res;/r(x +6) U (zy) = 0.
Taking the corestriction of both sides, we get by the projection formula:
(x +0)UNL/p(zy) =0.
Since Ny /r(zy) = ay? and 26 = 0, it follows that
XU (ay®) +0Ua=0,

hence
xUa=2xUy+0Ua. |

Remark: The proposition above takes a very explicit form in the case where the
base field F contains a primitive 4-th root of unity (4. In that case, Kummer the-
ory shows that every cyclic F-algebra of degree 4 is a symbol algebra A¢, (a,b)F,
i.e. an algebra generated by two elements ¢, j subject to

-4 -4 b
b

i=a g = Ji = C4ij.

The algebra A, (a,b)F represents the image of the symbol {a,b} € K2F under
the norm-residue homomorphism R, : K2(F) — Br(F) (see [4]).
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According to [4], we have
AC4 (a7 b)%‘ = (a, b)F in BI‘(F),

therefore, if A¢,(a,b)r has exponent 2, then b = 2% — ay? for some z,y € F. If
z,y # 0, we have the following relations in Ko F"

{a’ b} = {avxz} + {av 1- a(x—ly)Z}

and

{a,1—a(z ')} + {(z" )% 1 — a(z™'y)*} = {a(z"'y)%, 1 —a(z"'y)?} = 0,

hence
{a7b} = 2{a,x} - 2{1"_1.% 1- a(x-—ly)Z}
=2{a,z} — 2{z" 1y, b} + 4{z "1y, z}.

Taking the image of both sides under the norm residue map, we get

A (a,b)p = (a,2)F ® (z7'y,b) .

4. Property D(p)

In this section,we investigate the case where K/F is an extension of prime-power
degree p™ and f = p, assuming that the base field F' contains a primitive p-th root
of unity. We obtain various characterizations of property D(p) which are used in
the proof of Theorem 10 and in the construction of indecomposable algebras in
section 7.

Throughout this section, we fix the following notation: p is a prime, (, is a
primitive p-th root of unity in F and K/F is a cyclic field extension of degree p”
(with n > 2). Let o denote a generator of the Galois group Gal(K/F) and let
L denote the intermediate field of codimension p in K. By Kummer theory, we
have

K = L(5)
for some 6 such that 0"~ (8) = (,6. Let d = 67 € L.

LEMMA 7: The element A = 0(6)6~! € K lies in L* and satisfies

AP = O'(d)d_l and NL/F()‘) = Cp‘
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Every cyclic extension K'/F of degree p" containing L has the form

K'=L({/fd)  for some f € F*,

and every field extension of the form L{{/fd) with f € F* is cyclic of degree p™
over F.

Proof: We have

n—1

g (N) = 0" T HE)0P" T (8) 7 = (o) (Gp0) TP = A,

hence A € L*. Raising both sides of the relation A = ¢(6)6~! to the p-th power,
we get AP = o(d)d~1. Moreover,

pn.—l_l 1|, 1_1
NL/F(A) = H H [0.1+1 l(é ] oP —1(6)6_1 — Cp-
1=0 i=0

(Compare [1, p. 206].)

Suppose K'/F is a cyclic field extension of degree p" containing L, and let o’
be a generator of Gal(K'/F) such that o’|f = o|r. We also have K’ = L(¢') for
some 6’ such that ¢'?" " (') = (,&'. Let d' = 6’ and X = o’(¢")6'"!. Arguing
as above, we see X' € L* and Ny/p(X') = (. Therefore, Np/p(MA1) =1, and
Hilbert’s Theorem 90 yields an element u € L* such that

Ma~l =o(u)u™?!
Raising both sides to the p-th power, we get
o(d)d'~! - do(d)~! = o(u)Pu?,
hence d'd~1u~P € F*. Letting f = d'd~u~P, we have d' = fd mod L*P, hence
K' = L&) = L(/Fd).

Conversely, if d = fd for some f € F*, then d' ¢ L*P, since otherwise d =
f~! mod L*?, hence L(¥/d) ~ L ®F F(3/f-1) is not cyclic over F. Since
o(d')d'~ = o(d)d~" = I?, there is an F-automorphism of L(</d') which extends
o and maps ¢/d’ to A¥/d'. This proves L({/d’) is cyclic over F. |

Let I = F((t)) and L = L((t)) be the power series fields in one indeterminate
t over F and L respectively. Let a € F*. We denote by A¢,(t,a)z the symbol
algebra over F' generated by two elements 4, j subject to

iP =t, if=a, Ji = (pig.
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If a ¢ L*P, we also let L} = L({/a) and F* = F({/a).

ProrosITION 8:  With the notation above, the following conditions are
equivalent:

(i) The cyclic algebra A = (K/F,0,a) satisfies property D(p).

(ii) Either a € L*P or there exists x € L* such that

Npyp(z)=C¢  and  Npyp(z)=1.

(iii) Either a € L*? ord € F* - Npu/p(L*).
(iv) The symbol algebra Ac,(t,a)z is split by an extension of degree p of L
which is cyclic over F.

Proof: (i) = (ii): Suppose a € L*P and
A= (L/F,0,b)® Ac,(u,a)r
for some u € F*. Extending scalars to L, we get
Ap = A¢,(u,a)p  in Br(L).

On the other hand, Ay, is also Brauer-equivalent to the centralizer of L in A,
which is
(K/L,o"" " a) = A, (d,a)-

Therefore, A, (du~1,a)y is split, which means that there exists y € L* such that
Npyyp(y) = du™!.

Let z = Ayo(y)~! € L where X is defined in Lemma 7. Straightforward
calculations yield

Npsypi(x) = Npyjp(A) = G
and
Npsyp(x) = N Npyyp(y) (N (y) "
=o(d)d Y dulo(du~?)?
=1.

(ii) = (iil): Suppose a ¢ L*P. If z € L is such that

Npypi(z) =C¢  and  Npyyp(z) =1,
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then Nps pe(zA™!) = 1, hence Hilbert’s Theorem 90 yields an element y € L!
such that

z = Ayo(y) ™.

From the relation Nyy,p(z) = 1 it follows that

o(Npt/ () Npayr(y) ™' = X = o(d)d ™,

hence Nps/r(y)d~' € F*. This shows d € F* -NLu/L(Lu).

(iii) = (iv): If a € L*P, then the algebra A¢, (t,a) is split by K((t)), since it
is already split by L((t)). If d = f Npu1(y) for some f € F* and some y € L¥*,
then the symbol algebra A, (df ~1 a)r is split, hence

ACp (t, a)I: ~ A(p (dtf_l, a)ﬁ.

Therefore, the algebra A¢, (t,a) is split by L(%/dtf~1), which by Lemma 7 is
an extension of degree p of L cyclic over F.

(iv) = (i): Let M be an extension of degree p of I which is cyclic over ¥ and
splits A¢,(t,a)z. By Lemma 7, we have M = L({/J‘_d) for some f € F*. Since F
is Henselian with respect to the ¢-adic valuation and char. F' # p, every equation
XP — (1 +ts) = 0 with s € F[[t]] has a solution in F[[t]], hence the elements
in 1+ tF{[t]] are p-th powers. Therefore, multiplying f by a p-th power in F' if
necessary, we may assume f = fot/ for.some f, € F* and some j € Z:

Mzi(W).

Since fodt’ is a p-th power in M, the algebra Ac (fodt’,a)p is split. Since
by hypothesis A¢(t,a)nm is split, it follows that M splits A, (fod,a)r. Let M
denote the residue field of M for the extension of the t-adic valuation. Witt’s
exact sequence for the Brauer group of a complete discretely valued field (see
[8, Chapitre 12, §3]) shows that the p-torsion part of Br(M) injects into Br(M);
therefore, A (fod,a)F splits over M.

We claim that A¢,(fod,a)F splits over L. This is clear if j # 0 mod p, because
then M is totally ramified over L, hence M = I=1.

Suppose j = 0 mod p. Then M = L(¥/fod)((t)). If a ¢ M*P, then the equation
t = Ny yay/m(8) has no solution s € M({/a), since taking the image of both
sides under the t-adic valuation would yield 1 € pZ. Therefore, a € M *?, hence
M contains F(¢/a)((t)); but M is cyclic over F((t)), hence it contains a unique
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extension of degree p of F((t)), and this extension is contained in L. Therefore,

we have in this case
F(/a)((t)) c L,

hence a € L*P, and L splits A¢, (fod, a)p. This proves the claim.
We have thus proved that A¢,(fod,a)r is split, hence

A, (dya)p ~ Ag, (fo ' a)r ® L.

Now, as observed at the beginning of the proof, A, is Brauer-equivalent to
Ac,(d,a)r. Therefore, A®F A¢,(fo,a)r is split by L, hence

A~ (L/F,0,b)®F Ac,(f3 " a)r

for some b € F'*. This proves that A satisfies property D(p). |

5. A technical lemma

Let «, 3 be automorphisms of order a, b respectively of some field M. Assume
o and [ generate a group G of automorphisms of M which is isomorphic to
(Z/aZ) x (Z/bZ). For v € G of order g and x € M*, we let

Ny(z)=z-y(z)- - 7?7} (a).

Assume M is the field of fractions of some unique factorization domain D pre-
served under o and 3. These automorphisms therefore induce well-defined auto-
morphisms of the factor group M* /D>, where D* denotes the groups of units
of D. We shall also use the notation N, (§) for £ € M*/D*, although it could
be written more precisely as DX N,,(£).

Consider the following condition:

(%) For all r € D* and v € G such that N,(r) = 1, there exists
u € D* such that Ny (u) = Ny (r) and Ng(u) = 1.

This condition is actually symmetric in a and 3; indeed, if u € D* satisfies the
relations above, then v’ = u™!r satisfies No(u') = 1 and Ng(u') = Ng(r). It
automatically holds if v is in the subgroup generated by « or in the subgroup
generated by 3: if for instance 7 is in the subgroup generated by a, then N, (r) =
1 implies N, (r) = 1, hence the relations above hold with u = 1.
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LEMMA 9: If condition (*) holds, then every { € M* /DX such that N,(§) =
Np(€) = 1 has a representative x € M* such that N,(z) = Ng(z) =1.

Proof: By hypothesis, M*/D* is a free abelian group with a basis consisting of
the images P of irreducible elements P € D. Each element HF"(P) € M* /DX
has a well-defined length:

(IIP"7) =Y n(p),
and since D is stable under «,
£(Na(£)) = af(§)

for £ € M*/D*. Therefore, if £ is such that N, (£) = Ng(£) = 1, then £(¢) =
Let

(PP
where Py,..., P,,Q1,...,Q, are irreducible elements in D.

If n = 0, then 1 is a representative of { and N, (1) = Ng(1) = 1; we then argue
by induction on n.
The equations N (§) = Ng(§) = 1 yield

No(Py---Po)=Na(@Q1+-Qn),  Ng(Pr--Pn) = Np(Q1---Qn).

The first equation can be written as

a-1 a-1
[[®@) '@ = [[ @) o' @n).
i=0 i=0
Each of the factors a*(P;), o*(Qy) is the image in M*/DX of an irreducible
element in D; therefore, by the unique factorization property, each P; must be
equal to some o/ (Qy). Changing the numbering of Q,, ..., Q, if necessary, we
may assume that for alli = 1,...,n,

P =a*D(Q;) for some a(i) =0,...,a—1.

Similarly, from the second equation it follows that each P; is equal to some
B(Qk), so that there is a permutation 7 of {1,...,n} such that for all i =
1,...,n,

P = (Qrs)  for some b(3) =0,...,b—1.
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If the permutation 7 is not a cycle, then one can decompose
{1,...,77,} =Lul,

where I, I; are non-empty disjoint subsets preserved by 7; then
N, (H E) =N, <H @) and Ng <H E) = Ng (H @) fork=1,2.
1€l 1€1} i€l i€l

By the induction hypothesis, one can find a representative zj of [[,¢, (P:/Q:)
in M* such that N,(zx) = Ng(zk) = 1; then zz5 is a representative of £, and
No(z122) = Ng(z122) = 1.

We may thus assume that 7 is a cycle*. Changing the numbering of P, ..., Py,

Q1,-..,Q, again, we may assume that 7(i) =¢+1 mod n fori = 1,...,n. Since
P =p0(Qu1) fori=1,...,n (mod n),

we can choose 3°*)(Q;,) as a representative of P; for i = 1,...,n (mod n). We
shall therefore assume moreover that

(6) P; = 8°9(Qiy1) fori=1,...,n (mod n).
The equation P; = o*")(Q;) now yields elements r; € D* such that
(7) o (Q;) = r; P, fori=1,...,n.
By (6), it follows that

Q) = 7:8°9(Qi41) fori=1,...,n (mod n).
Eliminating Qa, ..., @, we get

aa(1)+~'+a(n)(Ql) — Haa(l+1)+~~~+a(n),8b(1)+~--+b(£—1)(Te) ﬂb(1)+"'+b(n)(Q1).

£=1
Let
r = otMtteln)(Q,) go+-+b(n) (@)1
(8) - H aa(l+1)+---+a(n)ﬁb(l)-l—m-{-b(f—l) (,’,e)

=1

* If n = 1, the identity is regarded as a cycle.
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and v = a“(1)+'"+a(n)ﬁ-(b(1)+---+b(")) € G; then

r=9(QQ7 for @ =g Ny,

hence N,(r) = 1. Moreover, (8) shows that r € D*; therefore, condition (x)
yields u € D* such that No(u) = No(r) and Ng(u) = 1.
Solving for r,, in (8) yields

E T | -1
Tn =IB-—«(b(1)+~--+b('n—1)) l:H aa(€+1)+..,+a(n)ﬂb(1)+---+b(2-1)(Te)]
=1
x BB+ +bn=1)) (1

n—1 -1
= [H aa(€+1)+---+a(n)5~(b(f)+---+b(n—1))(W)} B bM+tbn=1)) (1),
=1

Applying N, and multiplying both sides by Ng(ry -« 7,-1) yields

n-1

[T Na(ro) g0 4=0 (m)‘l}

=1
x g CWF DN (1)),

Na('rl Tn) = [

Let then

v = [ﬁ Y ﬁ—<b(e)+~--+b(n—1))(Te)—l} BB n=1) ().
=1
Since N4(r) = No(u), we have No(v) = No{r1--+rn); on the other hand, since
Ng(u) =1 it follows that Ng(v) = 1.
Consider then
T = vu € M*.

Ql"'Qn

Clearly, z is a representative of £ in M*. From (6), it follows that

B Np(P1)+--Np(P,)
Nol@) = Na) oy W) =

and from (7)

Na(Pl)"'Na(Pn) _ Na(v)

Na(u) = Na('f)) Na(Ql) . Na(Qn) - Na("'l .. "rn)

=1. R
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Note that the converse of Lemma 9 holds: if r € D* is such that N,(r) =1
with v = a®8*, then Hilbert’s Theorem 90 yields an element £ € M * such that
r = z7y(z)"!. Let then

1) _flele) =
a’(z)  af(z) a(z)

y =
we have N, (y) = No(r~!) € DX and Ns(y) = 1, so
Na@) = Na@ =1 in M¥/D".

If one can find a representative z of y in M* such that N,(z) = Ng(z) =1, then
z = uy for some v € D* such that N,(u) = No(r) and Ng(u) = 1. Therefore,
condition (%) holds.

6. Brauer algebras

Interesting examples of cyclic algebras were constructed by Brauer in [2]. We
investigate their possible decomposition.

We first recall Brauer’s construction, following [7, §7.3]. Throughout this sec-
tion, ¢,n and ¢ denote powers of a prime p. We let {, = €*"/9 € C and consider
the field of rational fractions:

Eq,t = Q(Cq)(ula . -»llt),

where p17,..., 4 are independent indeterminates. Let o denote the automor-
phism of Eq. which permutes ui,...,u: cyclically and leaves {; invariant. If
n < t, we denote by K, ,; the subfield of E,; elementwise invariant under o™,
and we set

Rq,n,t = (Kq,n,t/Kq,l,ta g, Cq)-

According to [7, Theorem 7.3.8], the cyclic algebra R, .. is a division algebra of
degree n and exponent gn/t, whenever n < t < gn.

Our main result is the following:

THEOREM 10: Ifp is odd and q > p, the cyclic algebra Ry p2 ,, does not satisfy
property D(p). The cyclic algebra Ry g g does not satisfy property D(2).

Proof:  Suppose first that p is odd. For convenience of notation, we simply
denote K = K 32 g, L = Kg p g and F = K ;1 4, S0 that

FCLCK
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is a tower of extensions of degree p. Let also L = L({/{q) = Kpqppq and F¥ =
F(%/Cq) = Kpg,1,pq- In order to show that R, 2 ,,, does not satisfy property D(p),
it suffices by Proposition 8 to show that there is no z € L such that

9) Npym(2)=¢  and  Npyp(z) =1

(Note that if ¢ = p = 2 we have Nyps/p1((4) = (2 and Npayp(Cs) = 1)
The following notation will enable us to describe explicitly the field L: for
i=1,...,pand 7 =0,...,¢—1, let

X(GD) = b+ Ghinp + (P ptivap + -+ (T Vi (g-1)p € Egipg
and
zij = (G M (¢) ™.
We have
aP(A(E)) = (7N,
hence z;; € Lfori=1,...,pand j=0,...,4— 1. Let

(Observe that 17 =1.) Fori=1,...,pand k=0,...,¢ — 1, we have
1=
pikp == > CTN(ED),
1

hence

Eqpe=QG)N() 11 <p, 05 <g—1) = Q) (X, M(C))

and

L= Q(Cq)(X’ ’\I(CQ)q)’
(10) L' = Q(Cpq)(Xa)\l(Cq)q)-

Let 8 denote the automorphism of Epq e/ Eq pq defined by

ﬂ((pq) = C;lu?-q-
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We also denote by 3 the restriction of this automorphism to L¥ and we let a =
o|rt. The automorphisms o and 3 are of order p and generate the Galois group
Gal(I*/F) ~ (Z/pZ) x (Z/pZ). Direct computations yield:

iy = 4 Aer(@) fori=1,..p-1,

hence )
Tit15C,7 fori=1,...,p—1
afzi;) = _-; ’ '21£j .
Cq T1,jT51 fori=p
and
a(A1((g)?) = 3 1 A1 (Cg)"
Let
Yo = Tiqe1 ford=1,...,p—-1
and
X' ={z;|1<i<p, 0<j<q-1,j#1}
let also

D= Q(Cpq)[X/’yikl’ . "y;:;t—ll’)‘l(Cq)q]-

This ring is a (Laurent) polynomial ring over Q((pq); it is therefore a unique fac-
torization domain. Moreover, (10) shows that L! is the field of fractions of D, and
the calculations above show that it is stable under a. Since the indeterminates
are in L, the ring D is also clearly preserved under S.

We proceed to show that condition () of the preceding section holds. We have

D* = {cyT* ---y;lf"ll | ¢ € Q(lpg)™, n1,. .. 1p_1 € L}
Suppose v € Gal(L¥/F) and r = cy}* ---ygﬁ‘ll are such that
(11) N,(r)=1.

We have to show that there exists u € D* such that N,(u) = N,(r) and
Ng(u) = 1. As observed in the preceding section, this is easy if v is in the
subgroup generated by a or in the subgroup generated by 4. If it is not in any
of these subgroups, then N,(c) = Ng(c) and N,(y;) = Na(y:) = (;*. Therefore,
equation (11) yields

Na(c) = (grant=-+0=Dnr-s,
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Since p is odd, we have Ng((pg) = (g = (By; therefore, for

u = CC};I(ﬂ1+2n2+"'+(P—1)np—1)

we have
No(u) = Na(y1)™ -+ No(yp—1)"""" = Na(r)

and
Np(u) = Ny(c) ¢ ¥onat-+=lm) 1,

as required.
Suppose now that z € L* satisfies (9). Then

Na(z-D*)= Ng(z-D*)=1 in L"*/D*,

hence Lemma 9 shows that z- DX = 2’ - DX for some 2’ € L! such that N,(z') =
Ng(2') = 1. Let 2/ = zv with v € D*; then v satisfies

No(v) = No(2')Na(2)7' =¢;' and  Ng(v) = Na(2')Ng(2) ™! = 1.
But v = ¢y} -- -y;i"ll for some ¢ € Q((pq)™ and some ny,...,n,_1 € Z, hence
No(v) = gy d2nat ot Gomneet)  and Ny(u) = Na(e)gf™ 4205
Therefore, we must have ny = --- =np-; =0,
=t and  Ng(c) =1.

This is impossible, since the condition ¢? = ( ! implies Ng(c) = ¢P. This
completes the proof in the case where p is odd.

Suppose next p = 2. For convenience of notation, denote K = K;g35, L =
K; 45 and F = Ky 15, so that L is the intermediate extension of codimension 2
in K/F. Let also L¥ = L(\/=1) = K448 and F¥ = F(y/=1) = K4 5. In order
to show that R;gg does not have property D(2), Proposition 8 shows that it
suffices to prove that there is no z € L¥ such that

(12) NLu/Fu(z) =-1 and NLH/L(Z) =1.
We again give an explicit description of L. Fori=1,...,4, let

Ty = i + pivs € L, Xi =i —fipga €K
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and let
¥ = M A7t fori=1,2,3.

Since o4();) = —X;, we have y; € L. Clearly,
K= Q(xl7 . .,.’114,/\1, .. '7A4) = Q(zlv .. "x4’ylay2ay3aAl)’

L= Q(xl$ ey T4, Y1, 92,93, )‘%) and Lu - Q(<4)(l'1, ey T4, Y1,Y2, Y3, A%)

Let a = 0|7+ and let 8 be the non-trivial automorphism of L!/L. The orders of
o and S are 4 and 2 respectively, and these automorphisms generate Gal(L!/F).
Straightforward computations show that

al{x;) = Tiy1 fori=1,...,4 (mod 4),

aly)) =7ty aly) =yayrt,  alys) = -yt

and
a(A}) = yiAl.

Therefore, the ring

D = Q(Céi)[ml, .. 'ax4ay]:,t17y:2t1’y,‘:3tl) )‘%]

is a unique factorization domain which is preserved under o and § and whose
field of fractions is L*.

We check condition (): suppose r = cy7*y5?y5° with ¢ € Q({4)* and ny, ng, ns
€ Z, and v € Gal(L*/F) are such that N,(r) = 1. We have to find u € D* such
that N4(u) = Nu(r) and Ng(u) = 1. As noticed in the preceding section, this
is straightforward if v is in the subgroup generated by « or in the subgroup
generated by 8. If v = af or a3f3, then

N, (r) = Na(e) (=1)m+7s.

Since (3 is the complex conjugation on Q((4), we have Ng(c) > 0, hence the
relation N, (r) = 1 implies ny + n3 is even and Ng(c) = 1. We may then choose
u=c. If y = a3, then

Ny(r) = Np(c) (=1)™*™ (yyy 'ys) ™+,

so the condition N,(r) = 1 implies ny + n3 = 0, ny + n3 even and Np(c) = 1.
Again, we may choose u = c.
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Lemma 9 now shows that if z € L* satisfies (12), then there exists v € D*
such that N,(zv) = Ng(2v) =1, i.e.

Ny(v) = ~1 and Ng(v) =1.

ny, n2,.Nn3

Letting v = cyy52y5° with ¢ € Q({4)* and ny,ns,n3 € Z, we have
No(v) =c*(=1)™*™  and  Ns(v) = Np(c)yi™ ys™u3™.

Therefore, we must have n; = ny = ng = 0 and ¢* = —1. This is impossible,
since Q((4) does not contain a primitive 8-th root of unity. ]

Combining Proposition 8 and Theorem 10, we obtain examples which show
that the cyclicity criterion of [3] for biquaternion algebras does not generalize to
algebras of higher degree. Corollary 5.11 of [3] states: Let A be a central simple
F-algebra of degree 4 and exponent 2 and let L be a quadratic extension of F
contained in A. Suppose L can be embedded in some cyclic extension K/F of
degree 4. The algebra A is split by such a cyclic extension if and only if it is
isomorphic to the corestriction cory,/p(Q) of some quaternion algebra Q over L.

The “only if” direction is easy to generalize: if A is a cyclic algebra of exponent
p (prime) and degree p™:

A=(K/F,0,a)

and if L denotes the intermediate extension of codimension p in K/F, then by
[5, Theorem 30.10],
AP = (L/F,0,a) in Br(F),

hence the condition that A has exponent p implies a = N, (£) for some £ € L*.
Then
A= corL/p(K/L,a”n_l,Z) in Br(F).

However, Brauer algebras yield examples which show that the “if” direction does
not generalize to algebras of degree p? and exponent p if p is odd, nor to algebras
of degree 8 and exponent 2, as we now show.

Suppose first p is odd. With the notation of the preceding section, Theorem 10
shows that the algebra R, ,2 o = (K4 p2 pg» 9, ;) does not satisfy property D(p),
hence Proposition 8 shows that the symbol algebra

Ag, (8 Ca) Ky 1 pa((8)
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is not split by any extension of degree p of Ky, .((t)) which is cyclic over
Kq,1,pq((t)). Nevertheless, since R, 2, has exponent p, by [7, Theorem 7.3.8],

X
9,p,pq’

corestriction of a symbol over Kg p, nq((%)).
For p = 2, Theorem 10 shows that R2gs = (K288/K218,0,—1) does not
satisfy property D(2), hence Proposition 8 shows that the quaternion algebra

(q is a norm from K, hence A, (t,(4)k, 1,,((t)) is Brauer-equivalent to the

(t’ _1)K2,1,a((t))

is not split by any quadratic extension of Kj4((t)) which is cyclic over
Kj1,8((t)). This quaternion algebra is Brauer-equivalent to the corestriction
of some quaternion algebra over K 48((t)) however, since the fact that Ry g
has exponent 2 implies that —1 is a norm from Ky 4 g.

7. Indecomposable algebras

In this last section, we show how property D(p) relates to more general decom-
position properties, and use Brauer algebras to produce indecomposable division
algebras of prime exponent.

We first review the general construction, which is explained in still greater
generality in [7, §7.3]. Let p be a prime and

R=(K/F,0,q)

be a cyclic algebra of degree p?. Suppose F contains a primitive p-th root of
unity {p. Let L be the intermediate subfield of codimension p in K, so

K = L(6)

for some 6§ € K such that oP(§) = (,6. As in Lemma 7, we have o(§) = ué for
some p € L*. Write

2

p°—-1
R=@K~zi

=0
where zP° = a and zkz~! = o(k) for k € K. Let Ry denote the (commutative)

subring of R generated by L and 2P:

Ro = _@L (2P) = L[2F) = L(/a).
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We assume throughout Ry is a field, which simply means a ¢ L*P.
Let A1, A2 be independent commuting indeterminates over F. In R(A1, A2) =
R ®p F(A1, A2) we consider the elements

o n

(5026)\1, Z°=Z/\2, aozaAg =z<>p
and we let
F°-——F()\’1’,)\’2’), L°=L(/\§’,)\’2’), K°® = L°(6°).

We extend o to K(A1, Ay) by letting Aj, Ao invariant and consider the cyclic

algebra
p°-1

R° = (K°/F°,0,0°) = P K°- 2,
-

which is denoted by R’ in [7, p. 252]. Proposition 7.3.21 of [7] shows that R® is a
division algebra of degree p™ and exponent dividing the exponent of R (provided
R is not split).

ProprosITION 11: If R® decomposes into a tensor product of two subalgebras
of degree p, then R has property D(p).

Proof: Proposition 7.3.26 of [7] shows that if R® decomposes, then
2P = f Npy/F(zv)(r)

for some f € F* and some r € Ry. Letting 7 denote the automorphism of Ry/L
such that 7(zP) = (2P, we then have

Gp=T(F)7P = NRO/F(ZP)(T(T)T—l).
Therefore, the element z = 7(r)r~! € Ry satisfies
Npy/rzry() =C  and  Npyp(z) =1,
hence Proposition 8 shows that R satisfies property D(p). (In the notation of
that proposition, Ry = L* and F(zP) = F})) 1
Remark: The converse of Proposition 11 also holds.

COROLLARY 12: Let q be a power of p, with ¢ > p, and let Rg 2 ,, denote
the Brauer algebra constructed in the preceding section. If p is odd, the algebra

R is an indecomposable division algebra of degree p* and exponent p.

O
q,p%,pq
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23
q,p%,pg

Proposition 11. The other properties follow from general results about the °

Proof: Indecomposability of R readily follows from Theorem 10 and

construction. |

Remark: Corollary 12 is already announced in [6, Theorem 4] and [7, Theo-
rem 7.3.28]. The proofs given there contained gaps, however. Specifically, the
proof of Proposition 5 in [6] is not sufficient, because (in the notation of that
paper) the automorphism ¢ does not necessarily preserve the rings H, H;. Simi-
larly, the proof of Proposition 7.3.27 in [7] uses the hypothesis that f; is relatively
prime to N(hy) to derive that it divides ag, whereas it is only assumed that f; is
relatively prime to hy. We are indebted to Al Sethuraman and Adrian Wadsworth
for pointing out these gaps to us. Note however that Proposition 7.3.27 of [7] is
correct as stated; a proof can be given on the same lines as Lemma 9 above.

On the other hand, we do not know how to patch the gaps in the proofs of the
noncrossed product results ([6, Theorem 4(ii)], [7, Theorem 7.3.30]). Another
open question is whether the Brauer algebra R 2 ,, itself is indecomposable (as
opposed to the generic construction R? based on it).

7.p%.pq
have the property that the algebraic

Lod
9,p%,pq

closure of Q in their center is Q((;). However, an ultraproduct construction also

The indecomposable algebras R

yields examples where the base field contains all the p™-th roots of unity for all
n: let I =N~ {0} and, for ¢ € I, let

Di = Rpi p2,prtle
Let F be any ultrafilter on I containing the cofinite filter. The ultraproduct

D=]][Di/F
i€l
is a ring such that any elementary sentence holding in almost all D; holds in D
(see [7]). In particular, D is a division algebra; its degree is p? since this con-
dition is determined by the standard polynomial identity Sqz2 (and nonidentity
Sop2—1), which is an elementary sentence. Since decomposability is elementary,
D is indecomposable. Moreover, for all integers n, the center of D; contains a
primitive p™-th root of unity if ¢ > n, hence the center of D contains a primitive
p™-th root of unity for all n.
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