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ABSTRACT 

A cyclic algebra (K/F, a, a) of degree n has property D(f) if it decom- 

poses as a tensor product of a cyclic algebra of degree e ---- ~ containing 

L (the fixed subfield under ct e) and a cyclic subalgebra of degree f con- 

taining an f - t h  root of a. Although D(2) holds for every cyclic algebra of 

degree 4 and exponent 2, D(p) fails for Brauer algebras of degree p2 and 

exponent p, and D(2) fails for Brauer algebras of degree 8 and exponent 

2. Using this, one fills the gap in [6, Theorem 4] and [7, Theorem 7.3.28], 

to show tha t  the example given there is indeed tensor indecomposable of 

degree p2 and exponent p. An easy ultraproduct argument provides an 

example containing all pk roots of 1, for all k. 
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In troduct ion  

The aim of this paper is to investigate the possible decompositions of cyclic 

division algebras into tensor products of cyclic subalgebras. More precisely, let 

K / F  be a cyclic field extension of degree n and let a be a generator of the Galois 

group Gal(K/F). For any element a E F • , the cyclic algebra (K/F, a, a) is 

defined as 

(K/F, a, a) = K @ Kz |  @ Kz  n-1 

where z is an indeterminate subject to the following relations: 

zk =a(k)z f o r k E K ,  

Z n ~ a .  

This algebra is central simple over F of degree n (i.e. dimension n2). See [7] or 

[5, w for background information on cyclic algebras. 

If n = el,  the element z ~ centralizes the subfield L C K elementwise invariant 

under a ~, and the cyclic algebra (K/F, a, a) contains the commutative subalgebra 

L(z ~) "~ L | F(z ~) ~- L | F (~/a). 

We say that the cyclic algebra (K/F, a, a) has p r o p e r t y  D(f)  if it decomposes 

into a tensor product of a cyclic subalgebra of degree e containing L and a cyclic 

subalgebra of degree f containing an f - th  root of a: 

(K/F, a, a) "~ (L/F, a, b) | (M/F,  r, a) 

for some b E F • and some cyclic extension M / F  of degree f .  

Standard arguments reduce investigation of property D(f)  to the case where 

the degree n is a power of a prime (see Proposition 3 below). We show that 

property D ( f )  is related to the existence of cyclic splitting fields of a particular 

type for certain cyclic algebras (see Proposition 4) and that property D(2) holds 

for every cyclic algebra of degree 4 and exponent 2 (see Proposition 6). Our 

main result (Theorem 10) is that certain cyclic division algebras constructed 

by Brauer [2] yield examples of algebras of degree p2 and exponent p which do 

not have property D(p) for p any odd prime, and of algebras of degree 8 and 

exponent 2 which do not have property D(2). In the last section, these algebras 

are used to produce indecomposable division algebras of prime exponent. For 

any odd prime p, we construct indecomposable division algebras of degree p2 and 
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exponent p over a field of characteristic zero containing a primitive p-th root of 

unity. An ultraproduct construction yields examples where the base field contains 

a primitive p~-th root of unity for all integer n. 

1. C o h o m o l o g i c a l  f o r m u l a t i o n  o f  p r o p e r t y  D(f)  

Let F be an arbitrary field. Fix some separable closure F8 of F and let FF = 

Gal(Fs/F) denote the absolute Galois group of F.  Recall that the Brauer group 

Br(F)  is isomorphic to the second cohomology group H2(FF, F~)  under an 

isomorphism induced by the crossed-product construction: 

A: g 2 ( r F ,  F~)  ~ Br(F).  

Let X(F)  denote the character group of FF: 

X(F) = Hom(rF, Q/Z) = g2(rF,  Z). 

A character )t E X(F)  of order n takes values in the subgroup ( ~ Z ) / Z  C Q/Z 

and defines a cyclic extension K / F  of degree n consisting of the elements of F8 

which are fixed under the subgroup kerx  C FF; moreover, if 7 E r E  is such that  

X('Y) = 1/n E Q/Z,  then the image of ~/in FF/ker X = Gal(K/F) is a generator 

a of GaI(K/F). For any a E F • - H~ F~X), the cup-product 

xUa ~ H2(FF, F~) 

the Brauer class of the cyclic algebra (K/F, a, a) under the corresponds to 

isomorphism A. 

If n = el,  the character ]X has order e; it defines the fixed subfield L C 

K under a e. Therefore, the main property quoted in the introduction can be 

restated as follows: 

for X E X(F)  and a E F x , the cup-product ;~ U a satisfies property 

D(f)  if there is a decomposition 

(1) x U a  : f x U b + g U a  

for some b e F x and some ~ e X(F)  of order f .  

PROPOSITION 1: The cup-products X U a which have property D(I)  are killed 

by the /eas t  common multiple m ore and f .  / r e  and f are relatively prime, then 

every cup-product X U a has property D(f) .  
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Proo~ Since m kills both  terms on the right-hand side of (1), it also kills the 

left-hand side. If e and f are relatively prime, then there are integers e', f '  such 

that  ee ~ + f S '  = 1. Every cup-product X U a may then be decomposed as 

X U a = f X  U a S' + (ee'x)  U a. I 

We next observe that  the condition that  the character 8 in (1) has order f can 

be weakened to: f 8  = O. 

PROPOSITION 2: Let X E X ( F )  be a character o f  order n and a E F x. I f  

(2) x U a  = f x U b + S U a  

for some b E F x and some 8 E X ( F )  such that  f 8  = O, then X U a satisfies 

proper ty  D(S) .  

Proo~ Let f~ be the order of the character 8 in (2); then f~ divides S. Suppose 
I ! 

O~1  , ,  $ = p~,l . . .  PT" and S~ = Pl �9 p7" are the prime factorizations of S and f~. We 

then have a{ < ai  for all i = 1 , . . . ,  r. Let 

= ~  p ~ - ~ ' n ( x - 8 )  i f a ~ < a ~ ,  

l 0 if a~ = al .  

If  a{ < ai ,  then p ~ l n 8  = 0, hence 

Pi ~Pi = PT~ Inx  ~ O. 

Therefore, the order of r is p ~  in this case. Moreover, multiplying both sides 

of (2) by pYre'n, we get 

p Y ~ ' u ( x -  8) u a : O, 

hence 

~b~ U a =  0 for i =  l , . . . , r .  

Therefore, 8' = r  -+r  has order f and satisfies 8'Ua = 8Ua. Substituting 

0 ~ U a for 8 U a in (2), we see that  X U a satisfies property D ( f ) .  I 

The next proposition yields the reduction to the prime power degree case 

announced in the introduction. Suppose n = nln2 where nl  and n2 are rela- 

tively prime. For e, f such that  e f  -- n, consider the greatest common divisors: 

el = gad(e, nl) ,  f l  = gad(f,  nl) ,  
e2 = gad(e, n2), f2 = gad(f,  n2), 
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so tha t  

nl = elf1 and n2 = e2f2. 

Let m l , m 2  E Z be such tha t  n l m l  + n 2 m 2  = 1. 

PROPOSITION 3: For  any character )( E X ( F )  of order n, set 

X1 = n2m2x and X2 = n lmlX ,  

so that X~ E X ( F) has order ni and 

X = X1 Jr X2. 

For a E F x , the cup-product X U a has property D ( f )  if and only i f  X1 U a has 

property D ( f l )  and X2 U a has property D(f2) .  

Proof: Suppose first X U a has proper ty  D ( f )  and consider a decomposi t ion 

x U a  = S x u b J r O u a  

for some b E F x and some 0 E X ( F )  such tha t  fO = O. Multiplying bo th  sides 

of this equali ty by n2m2 (resp. by n t m t ) ,  we get 

Xt U a = SlXt U b h Jr 81 U a (resp. X2 U a = f2x2 U b I1 Jr 02 U a) 

where 01 = n2m28 E X ( F )  is such tha t  f101 = 0 and 82 = nlmlO E X ( F )  

is such tha t  f282 = O. Therefore, )(1 U a has proper ty  D(Sl  ) and X2 U a has 

proper ty  D(S2). 

Conversely, if a E F x is such tha t  Xl U a has proper ty  D( f l )  and X2 U a has 

proper ty  D(S2), then 

(3) X1 U a = f i x 1  U bt Jr O1 U a and X2 U a = f2X2 U b~ Jr 82 U a 

for some bt, b2 E F x and some 81, 03 E X ( F )  such tha t  S181 = f282 -- 0. We 

have 

fiX1 U b~. 1 = nlXt  U b2 = 0, 

hence, mult iplying by f2ml: 

(4) / X l  U b~ lm' = O. 

On the other  hand,  since n l m l  + n 2 m 2  = 1 we have ~(1 = n2m2Xl = f2(e2m2)xl ,  

hence 

fiX1 U bl = fX1 U b~ 2~2. 
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Taking (4) into account, it follows that  

flXl U bl = fxi U bie2m2 b2elm~ . 

Similarly, 

f2x2 u b2 = f x2  U bie2,n2 b2elml , 

hence, adding the two equations in (3), we get 

X U a f x  e2m, elml = U b 1 b 2 -b (01 + 02) U a. 

Since f(01 + 02) = 0, this relation shows that  X U a satisfies property D(I ) .  

Isr. J. Math. 

2. Cyclic splitting 

As in the introdudtion, we denote by K / F  a cyclic field extension of degree n 

and by L the unique intermediate subfield such that  [K : L] = f ,  [L : F] = e. 

Assume f r 1, n. In view of Proposition 3, we further assume n is a power of a 

prime p. 

PROPOSITION 4: Let a E F x . I[ the cyclic algebra (K /F ,  a, a) has property 

D ( f ) ,  then every cyclic algebra (M/F,  r, a) of degree dividing f is split by a 

cyclic extension K ' / F  of degree n containing L as an intermediate extension. 

Proof'. Let X E X ( F )  denote the character of order n such that  

A(X U a) = (K/F ,  a, a) in B r ( f ) .  

Since property D ( f )  is assumed to hold for (K/F ,  a, a), or equivalently for X U a, 

we have 

(5) x U a  = f x U b + O U a  

for some b e F • and some 0 E X ( F )  such that  fO = O. 

For any r E X ( F )  such that  f r  = 0, let X' = X - 0 + r  e X ( F ) .  Since 

f 0  = f r  = 0, we have 

f x '  = f x ;  

since n is a prime power, it follows that  X' has order n, hence it defines a cyclic 

extension K ' / F  of degree n containing L. Moreover, from (5) it follows that  

(X -- 0) U a = f x  I U b = X I U b f, 
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hence 

C U a - _  x t U a b  - f .  

Therefore, A(r  U a) is split by K ~. | 

Note that  the converse of Proposition 4 does not hold: if F is a local field, 

a E F is a uniformizing parameter and L / F  is the (unique) unramified extension 

of degree e, then every cyclic algebra ( M / F ,  ~', a) of degree dividing f is split by 

an extension of degree f of L which is cyclic over F, namely by the unramified 

extension K / F  of degree n (see [8, Chapitre 12, w However, ( K / F ,  a, a) does 

not decompose, since its exponent is equal to its degree. 

3. Algebras of degree 4 

The aim of this section is to show that  every cyclic algebra of degree 4 and 

exponent 2 has property D(2). In the case where the characteristic is different 

from 2, this property also follows from general results concerning algebras of 

degree 4 and exponent 2: see [3, Proposition 5.2]. 

If the characteristic of the base field F is different from 2, then for a, b E F x we 

denote by (a, b)F the quaternion algebra generated by two elements i, j subject 

to 

i 2 = a, j2 = b, j i  = - i j .  

If the characteristic of F is 2, then for a E F and b E F x we denote by [a, b)F 

the quaternion algebra generated by two elements i, j subject to 

p(i)  = i 2 - i = a, j2 = b, j i  = i j  + j.  

LEMMA 5: Let  L / F be a quadratic field extension. For every character r E X ( L ) 

of  order 2 and every x E L • there exist 0 E X ( F )  and y E F x such that  20 -- 0 

and 

(r + resL/r(e)) U (xy) = 0. 

Proof'. We consider separately the cases where char. F ~ 2 and char. F = 2. 

If char. F ~ 2, the cup-product r U x represents a quaternion algebra (~, X)L, 

for some ~ C L x such that  kerr  = Gal (Fs /L (v~ ) ) .  We then have to show that  

there exist f ,  y E F x such that  (el, xy)L is split. If x E F x, we may choose 

f = l , y = x ; s i m i l a r l y ,  i f ~ E F  x we may c h o o s e f = [ , y = l .  I f x , s 1 6 2  x we 
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may find f ,  y E F • such that  ef  + xy = 0 or 1, since the dimension of L over F 

is 2. The elements f ,  y then satisfy the required conditions. 

If char. F = 2, the cup-product r U x represents a quaternion algebra [~, X)L 

for some ~ E L such that  ker r = Gal(F~/F(p-l(e)));  we have to show that  there 

exist f E F,  y E F • such that  [ / +  f ,  xy)L is split. If  x E F x, we may take 

f = 0, y = x; similarly, if s E F we may take f = ~, y = 1. If x, g r L, then 1, 

is a basis of L over F,  hence we may find f E F,  y E F • such that  ~ = f + xy. 

Then [~ + f ,  xy)L = [xy, Xy)L is split. I 

PROPOSITION 6: Property D(2) holds for every cyclic algebra of  degree 4 and 

exponent 2. 

Proof." Let )~ E X ( F )  be a character of order 4 and let a E F x . Let also L denote 

the quadratic field extension of F associated with 2X. If X U a has exponent 2, 

then 2X U a = 0, hence a is a norm from L: let a = NL/F(X) for some x E L • . 

The lemma shows that  one can find O E X ( F ) ,  y E F • such that  20 = 0 and 

reSL/F(X + O) U (xy) = O. 

Taking the corestriction of both  sides, we get by the projection formula: 

(X + O) U NL/F(Xy) = O. 

Since NL/F(Xy) = ay 2 and 20 = O, it follows that  

x U  (ay 2) + Ou a = O, 

hence 

x U a = 2 x U y + O U a .  I 

Remark: The proposition above takes a very explicit form in the case where the 

base field F contains a primitive 4-th root of unity ~4. In that  case, Kummer  the- 

ory shows that  every cyclic F-algebra of degree 4 is a symbol algebra Ar (a, b)F, 

i.e. an algebra generated by two elements i, j subject to 

i 4 = a, j4 = b, j i  = ~aij. 

The algebra Ar (a, b)F represents the image of the symbol {a, b} E K2F under 

the norm-residue homomorphism Rr K2(F) --* Br(F)  (see [4]). 
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According to [4], we have 

A(4 (a, b) 2 = (a, b)g in Br(F);  

therefore, if A(4(a,b)F has exponent 2, then b = x 2 - ay 2 for some x , y  E F. If 

x, y r 0, we have the following relations in K2F: 

{a, b} = {a,x 2} + {a, 1 - a(x - l y )  2} 

and 

{a, 1 - a ( x - i y )  2 } + {(x - iy )  2, 1 - a ( x - l y )  2} : {a (x - l y )  2, 1 -- a ( x - l y )  2 } • O, 

hence 
{a,b} = 2{a,x} - 2{x--ly, 1 -- a(x - l y )  2} 

= 2{a, x} - 2 { x - l y ,  b} -b 4{x- iy ,  x}. 

Taking the image of both sides under the norm residue map, we get 

A(4 (a, b)F = (a, X)F | ( x - i y ,  b)F. 

4. P r o p e r t y  D(p) 

In this section,we investigate the case where K / F  is an extension of prime-power 

degree pn and f = p, assuming that the base field F contains a primitive p-th root 

of unity. We obtain various characterizations of property D(p) which are used in 

the proof of Theorem 10 and in the construction of indecomposable algebras in 

section 7. 

Throughout this section, we fix the following notation: p is a prime, ~p is a 

primitive p-th root of unity in F and K / F  is a cyclic field extension of degree pn 

(with n _> 2). Let a denote a generator of the Galois group Gal (K /F)  and let 

L denote the intermediate field of codimension p in K. By Kummer theory, we 

have 

K = L(5) 

for some 5 such that  a p"-I (5) = r Let d = SP E L x . 

LEMMA 7: The elcmen~ A = o ' ( 6 ) 6  - 1  E K lies in L x and satisfies 

A p = a(d)d - i  and NL/F(A) = (p. 
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Every  cyclic extension K ' /  F of  degree pn containing L has the form 

K '  = L(~f-f-d) for some f �9 F x , 

and every field extension of the form L(  ff  ~-3) with f �9 F x is cyclic o f  degree p~ 

over F.  

Proo~ We have 

aP~-' (~) = av~- l+l(6)av~ (6) -1 = a(r162 -1 = A, 

hence A E L x . Raising both sides of the relation A = a(6)5 -1 to the p-th power, 

we get Av = a(d)d  -1. Moreover, 

pn-1 --1 pn-l--1 

NL/F(A)  = H hi(A) = 1-I [ a i+l (5)a i (5) - l ]  = a P ' - ' ( 5 ) 6 - 1  = r 
i=0 i=0 

(Compare [1, p. 206].) 

Suppose K ' / F  is a cyclic field extension of degree pn containing L, and let a '  

be a generator of G a l ( K ' / F )  such that  a'[L = alL. We also have K '  = L(5')  for 

some 5' such that  a 'p"-I (5') = ~p6'. Let d' = 5 'p and A' = a'(6')5 '-1.  Arguing 

as above, we see A' �9 L x and NL/F(A '  ) = @. Therefore, NL/F(A 'A  -1)  = 1, and 

Hilbert 's Theorem 90 yields an element u �9 L x such that  

~';~-' = a ( u ) u - k  

Raising both sides to the p-th power, we get 

a(d ' )d  ' -1 �9 da(d) -1 = o-(~t)P~t -p ,  

hence d ' d - l u  -p  �9 F • . Letting f = d ' d - l u  -p ,  we have d' - f d  mod L xp, hence 

g ' =  L(~/-@) = L(~f]-d). 

Conversely, if d' = f d  for some f �9 F x, then d' • L • since otherwise d = 

f - 1  mod L xp, hence L(~crd) "~ L @F F ( f ~ / ~ )  is not cyclic over F.  Since 

a(d ' )d  ' -1 = a(d)d  -1 = AP, there is an F-automorphism of L(~cQ7) which extends 

a and maps ~r to A~/-~. This proves L(~cf~) is cyclic over F.  | 

Let F = F(( t ) )  and L = L(( t ) )  be the power series fields in one indeterminate 

t over F and L respectively. Let a �9 F • We denote by Acp( t ,a )p  the symbol 

algebra over F generated by two elements i, j subject to 

i p = t, jP = a, j i  = (pij. 
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If a r L • we also let L~ = L(~r and F~ = F(~/a).  

PROPOSITION 8: With the notation above, the following conditions 

equivalent: 

(i) The cyclic algebra A -- (K/F,  a, a) satisfies property D(p). 

(ii) Either a E L • or there exists x E L~ such that 

are 

NLUF,(X ) = (p and NLUL(X) = 1. 

(iii) Either a 6 L xp or d E F x �9 NLUL(L~ ). 

(iv) The symbol algebra Ar  is split by an extension of degree p of L 

which is cyclic over F. 

Proo~ (i) ~ (ii): Suppose a r L • and 

A = (L/F,  a, b) | A;~ (u, a)F 

for some u 6 F • . Extending scalars to L, we get 

AL = Acp(u,a)L in Br(L). 

On the other hand, AL is also Brauer-equivalent to the centralizer of L in A, 

which is 
p~-I  

( K / L , a  ,a) = Acp(d,a)L. 

Therefore, A(p (du -1, a)L is split, which means that there exists y E L ~ such that  

Let x -- Aycr(y) -1 

calculations yield 

and 

NL,/L(Y) ---- du -1. 

6 L~, where A is defined in Lemma 7. 

N L , m ( x )  = NL/F( ) = 

NLUL(X ) = AP NLUL(y ) a(NLUL(Y)) -1 

= a(d)d -1 du -1 a(du-1)  -1 

----1. 

(ii) =~ (iii): Suppose a • L • If x 6 L ~ is such that  

Straightforward 

NLUF~(X) = (p and NLUL(X ) = 1, 



564 L.H. ROWEN AND J.-P. TIGNOL Isr. J. Math. 

then NL~/F~(XA -1) = 1, hence Hilbert's Theorem 90 yields an element y E L ~ 

such that  

x = )~ ya(y) -1. 

From the relation NL~/L(X ) = 1 it follows that 

a(NL~/L(y)) NL~/L(y) -1 = AP = a(d)d -1, 

hence NL~/L(y)d -1 E F • This shows d E F • �9 NL~/L(L~). 
(iii) ~ (iv): If a C L • then the algebra Acp(t, a)y is split by K((t)), since it 

is already split by L((t)). I f d  = fNL~/L(y ) for some f E F • and some y C L ~x, 

then the symbol algebra Ar -1, a)L is split, hence 

Ar a)L ~_ Ar -1, a)t. 

Therefore, the algebra Ace(t, a)[~ is split by L ( ~ ) ,  which by Lemma 7 is 

an extension of degree p of L cyclic over 15. 

(iv) ~ (i): Let M be an extension of degree p of L which is cyclic over 15 and 

splits Ar By Lemma 7, we have M = L(~r ) for some f E F•  Since 15 

is Henselian with respect to the t-adic valuation and char. F ~ p, every equation 

X p - (1 + ts) = 0 with s e Flit]] has a solution in Flit]I, hence the elements 

in 1 + tF[[t]] are p-th powers. Therefore, multiplying f by a p-th power in t 5 if 

necessary, we may assume f = fo tj for.some fo E F x and some j E Z: 

Since fodt j is a p-th power in M, the algebra Ar is split. Since 

by hypothesis Ar is split, it follows that M splits Acp(fod, a)F. Let M 

denote the residue field of M for the extension of the t-adic valuation. Witt 's  

exact sequence for the Brauer group of a complete discretely valued field (see 

[8, Chapitre 12, w shows that the p-torsion part of Br(M) injects into Br(M);  

therefore, Ar (rod, a)F splits over M. 

We claim that  Acp(fod, a)F splits over L. This is clear i f j  ~ 0 mod p, because 
_ _  "-X" 

then M is totally ramified over L, hence M = L = L. 

Suppose j -- 0 modp.  Then M = L(f~7~)(( t ) ) .  I ra  • M • then the equation 

t ----- NM(ff-5)/M(8) has no solution s E M(x~/-a), since taking the image of both 

sides under the t-adic valuation would yield 1 C pZ. Therefore, a E M xp, hence 

M contains F(xczd)((t)); but M is cyclic over F((t)), hence it contains a unique 
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extension of degree p of F((t)) ,  and this extension is contained in ],. Therefore, 

we have in this case 

F ( ~ ) ( ( t ) )  C L, 

hence a E L • and L splits Acp (rod, a)F. This proves the claim. 

We have thus proved that  Ar a)L is split, hence 

Acp(d,a)L "" Acp( fo l ,a )F  | L. 

Now, as observed at the beginning of the proof, AL is Brauer-equivalent to 

Acp(d, a)L. Therefore, A | Ace(f0, a)F is split by L, hence 

A ~_ (L /F , a , b ) |  Ar  

for some b E F x . This proves that  A satisfies property D(p). I 

5. A t echn ica l  l e m m a  

Let a, j3 be automorphisms of order a, b respectively of some field M. Assume 

and /3 generate a group G of automorphisms of M which is isomorphic to 

(Z/aZ)  x (Z/bZ).  For q, E G of order g and x E M x , we let 

Y.r(x ) = x . ~/(x) . . . . .  7g-l(x) .  

Assume M is the field of fractions of some unique factorization domain D pre- 

served under a and 13. These automorphisms therefore induce well-defined auto- 

morphisms of the factor group M X / D  x, where D x denotes the groups of units 

of D. We shall also use the notation N~(~) for ~ E M X / D  x, although it could 

be written more precisely as D • Nx(~). 

Consider the following condition: 

For all r E D x and ~/ E G such that N.r(r ) = 1, there exists (*) 
u E D x such that  N~(u) = N~(r) and N~(u) = 1. 

This condition is actually symmetric in a and t3; indeed, if u E D x satisfies the 

relations above, then u' = u - l r  satisfies N~(u') = 1 and N~(u') = N~(r). It 

automatically holds if 7 is in the subgroup generated by a or in the subgroup 

generated by ~: if for instance q, is in the subgroup generated by a, then N.r(r ) = 

1 implies N~(r) = 1, hence the relations above hold with u = 1. 
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LEMMA 9: I f  condition ( ,)  holds, then every ( E M• / D  x such that N~(~) = 

N~(~) = 1 has a representative x E M x such that N~(x)  = N~(x)  = 1. 

Proof: By hypothesis, M •  x is a free abelian group with a basis consisting of 

the images P of irreducible elements P E D. Each element 11 ~-~(P) E M X / D  x 

has a well-defined length: 

g(1-I ~ ( P ) )  = E n(P) ,  

and since D is stable under a,  

~ ( Y . ( ~ ) )  = a ~(~) 

for ~ E M •  • Therefore, if~ is such that  N~(~) = N~(~) = 1, then g(~) -- 0. 

Let 
P1... Pn 

Q 1 . . . Q n  

where P1,-- . ,  Pn, Q1 , . . . ,  Q~ are irreducible elements in D. 

I f n  = O, then 1 is a representative of~ and N~(1) = N~(1) = 1; we then argue 

by induction on n. 

The equations N~(~) = N~(~) = 1 yield 

Nc,(P1.. "Pn) = N~(Q1.. "Qn), Nf~(-~l.. "-~n) = N~(QI"" .Qn). 

The first equation can be written as 

a--1 a--1 

i=O i=0 

Each of the factors a~(~) ,  a~(Q--kk) is the image in M •  • of an irreducible 

element in D; therefore, by the unique factorization property, each Pi must be 

equal to some aJ (Q-kk). Changing the numbering of ~ , . . . ,  Q---~ if necessary, we 

may assume that  for all i = 1 , . . . ,  n, 

- -  a "(i) - ~  a(i)  0 , .  , a  1. P~ = ( . )  for some = .. - 

Similarly, from the second equation it follows that  each P~ is equal to some 

~J(~-) ,  so that  there is a permutation ~r of {1 , . . . , n}  such that for all i = 

1 , . . . , n ,  

-- ~b(i)(Q~(0 ) for some b(i) -- 0 , . . . ,  b -  1. 
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If the pe rmuta t ion  ~r is not a cycle, then one can decompose 

{ 1 , . . . , n }  = I1 LJ 12 

where I1, I2 are non-empty  disjoint subsets preserved by ~r; then 

N~ ( H  -~i) =N~ ( H  -Q~i) a n d N ~  ( 1 - [  ~)=N~ ( 1 - [  Q-~/] for k = 1,2. 
\ iE l~  / \ iE I k  / \ iE l~  / \ i E l k  / 

By the induct ion hypothesis,  one can find a representative xk of l-Lelk (P-i~/Q-~) 

in M x such tha t  N~(xk) = N~(xk) = 1; then xlx2 is a representat ive of ~, and 

N ~ ( x l x : )  = ;V~(xlx~) = 1. 

We may thus assume tha t  r is a cycle*. Changing the numbering of P1, �9 �9 Pn, 

Q1 , - . .  ,Q,~ again, we may assume tha t  zr(i) = i-t-1 mod n for i = 1 , . . .  ,n.  Since 

Pil  = flb(i)(Qi+l) for i = 1 , . . . , n  (mod n),  

we can choose ~b(i)(Qi+l) as a representat ive of ~ for i = 1 , . . . ,  n (mod n).  We 

shall therefore assume moreover tha t  

(6) Pi = flb(i)(Qi+l) for i = 1 , . . . , n  (mod n).  

The  equat ion ~ = a ~ ( i ) ( ~ )  now yields elements ri E D x such tha t  

(7) a a(i) (Qi) = r~Pi for i -- 1 , . . . ,  n. 

By (6), it follows tha t  

~o(i)(Q~) = ~gb(~)(q~+l) for i = 1 , . . . , n  (rood ~). 

Eliminat ing Q 2 , . . . ,  Q,~, we get 

~a(~)+...+a(n)(Q1)~[e=~c~a(~+~)+...+a(n)~b(~)+...+b(e-~)(re)]~b(~)+...+b(n)(Q~). 

Let 
r = a~(1)+...+a(n)(Q1) /~b(1)+...+b(n)(Q1)-1 

(8) n 

-- l - I  ~o(e+~)+...+o(n)zb(l)+...+b(e-1)(re) 
e = l  

* If n = 1, the identity is regarded as a cycle. 
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and 7 = c~(1)++~(~)t3-(b0)+'"+b('~)) E G; then 

r = ;(Q)Q-I for Q = #b(1)+"'+b(")(Q1), 

hence h~(r)  = 1. Moreover, (8) shows that, r E D• therefore, condition (,) 

yields u C D x such that  N~(u) = N~(r) and N#(u) = 1. 

Solving for r~ in (8) yields 

rn--_/~-(b(1)+'"+b(n-1))[nIIlo~a(e+l)§ -1 
Lg= l  

x #-(b(1)+...+b(~-x)) (r) 
--1 

:In~lota(~+l)+'"-ka(n)~-(b(~)+'"+b(n-1))(p~)] ~-(b(1)-k"'-Fb(n-1))(r). 
Le=l 

Applying N~ and multiplying both sides by N~(rl . . .  r~- l )  yields 

Nc~(rl . . . rn) = [nril Nc~(re) ~-(b(e)+'"+b(n-1)) ( N~(re) ) - l l  
L ~ : I  

• fl-(b(1)+'"+b(n-1))(Na(r)). 

Let then 

V=IrIlre/~-(b(e)+-'+b(~-1))(re)-~]~-(b(1)-:""+b(~-l))(U). 
Lg= l  

Since Na(r) = N~(u), we have A~(v) = N~(rl...r~); on the other hand, since 

N~(u) = 1 it follows that N~(v) = 1. 
Consider then 

/ ' I " "P~  M • X=V E Q1...Q~ 

Clearly, x is a representative of ~ in M • . From (6), it follows that  

Nz(P~) . . .  i ~ ( P n )  = 1, 
N~(x)  = N~(V) N~(Q~) .. N~(Q~) 

and from (7) 

A~(P1) . . .N. (P~)  _ N~(v) 
Na(u) ---- Na(V) N~(Q1 ) . .N.(Q~) N~(r l . . . r~)  - 1. 
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Note t h a t  the converse of L e m m a  9 holds: if r E D x is such t ha t  N~(r) = 1 

with " / =  as/~t, then  Hi lber t ' s  Theorem 90 yields an element x E M x such t ha t  

r = x') '(x) -1.  Let  then  

x 

- - -  s(x) ' 

we have N~(y) = N~( r  -1)  E D • and N~(y) -- 1, so 

N , ( y )  = Nz(y)  = 1 in M X / D  • 

If  one can find a representat ive z of y in M x such tha t  N~(z)  = N~(z) = 1, then  

z = uy for some u �9 D x such tha t  N~(u) = N~(r) and N~(u) = 1. Therefore,  

condit ion ( . )  holds. 

6. B r a u e r  a l g e b r a s  

Interes t ing examples  of cyclic algebras were constructed by Brauer  in [2]. We 

investigate their  possible decomposi t ion.  

We first recall Brauer ' s  construct ion,  following [7, w Throughou t  this sec- 

tion, q, n and t denote  powers of a pr ime p. We let ~q ---- e 2i~r/q E C and consider 

the field of ra t ional  fractions: 

Eq: = Q((:q)(#1,..., #t), 

where # l , - . . , # t  are independent  indeterminates .  Let a denote  the au tomor -  

ph i sm of Eq,t which permutes  # 1 , . - . ,  pt cyclically and leaves ~q invariant.  If  

n ~ t, we denote by Kq,n,t the subfield of Eq,t elementwise invariant  under  a n, 

and we set 

Rq,n,t = ( Kq,n,t/ gq,l,t, 6, ~q). 

According to [7, Theo rem 7.3.8], the cyclic a lgebra Rq,n,t is a division a lgebra  of 

degree n and exponent  qn/t,  whenever n <_ t < qn. 

Our  main  result  is the following: 

THEOREM 10: I f  p is odd and q > p, the cyclic algebra Rq,p2,pq does not satisfy 

property D(p). The cyclic algebra  R2,s,s does not satisfy property D(2).  

Proof'. Suppose first t ha t  p is odd. For convenience of nota t ion,  we s imply  

denote K = Kq,p2,pq, L = Kq,p,pq and F = Kq,l,pq, so tha t  

F C L c K  
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is a tower of extensions of degree p. Let also L~ = L ( ~ q )  = Kpq,p,pq and F~ = 

E ( ~ q )  ---- Kpq,l,p q. In order to show that  Rq,p2,pq does not satisfy property D(p), 
it suffices by Proposition 8 to show that  there is no z E L t  such that  

(9) Ni~/Ft(Z ) = ~p and NL,/L(Z ) = 1. 

(Note tha t  if q = p = 2 we have NLJ/FI(~4) ---- ~2 and NLt/L(~4) = 1.) 

The following notation will enable us to describe explicitly the field L~: for 

i = 1 , . . . , p  and j = 0 , . . . , q -  1, let 

and 

We have 

2j ~i(~Jq) -~" ~ti -~- ~J ~ti+p -~- ~q "i+2p + ' ' "  n t" ~q -1 ) j  ~ti+(q_l)p �9 Eq,pq 

Xlj = )~i(ffqJ)~l(ffq) - j -  

hence xij E L for i = 1 , . . . , p  and j = 0 , . . . , q -  1. Let 

X =  {xij I i < i < P, O< j < q - 1 ,  (i,j) # (1,1)}. 

(Observe that  x1,1 = 1.) For i -- 1 , . . . , p  and k = 0 , . . . , q -  1, we have 

.~+~, = q j k : , , ( r  
q j=0 

hence 

Eq,pq = Q ( r 1 6 2  I 1 < i < p, 0 < j < q - 1) = Q(r  ~ 1 ( 6 ) )  

and 

L = Q(r 

(10) L ~ --  Q ( ~ p q ) ( X ,  )tl(~q)q). 

Let/~ denote the automorphism of Epq,vq/Eq,pq defined by 

~ ( 6 q )  = rl+q -~pq �9 
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We also denote by ~ the restriction of this automorphism to L ~ and we let a = 

a]i~. The automorphisms c~ and ~ are of order p and generate the Galois group 

Gal(L~/F) ~- (Z/pZ) • (Z/pZ). Direct computations yield: 

a(),i(r = / Ai+l(4J) for i = 1 , . . .  , p -  1, 
r  for i = p, ( 

hence 

and 

Let 

and 

let also 

f XiTI,jX2.~ for i = 1 , . . .  , p -  1 (~(xij ) 
Cq'Xi,jx~,~ for i = p 

O~(~1 (~q) q) = Xq,l~l(~q) q. 

Ye -- xl+e,1 for g = 1 , . . . , p -  1 

X ' = { x q [ l  < i < p ,  O < j < q - 1 ,  j r  

D = Q(~pq)[X', y~l, :~1 " ' ' '  Yp--l' "~l(r 

This ring is a (Laurent) polynomial ring over Q(@q); it is therefore a unique fac- 

torization domain. Moreover, (10) shows that L~ is the field of fractions of D, and 

the calculations above show that  it is stable under a. Since the indeterminates 

are in L, the ring D is also clearly preserved under ft. 

We proceed to show that condition (*) of the preceding section holds. We have 

n x {cy~l np_l . . ,  . . . .  yp-1 I c e Q(6q)  • nl , .  n~_~ �9 z}. 

Suppose 7 �9 Gal(L~/F) and r cy~ 1 n,-1 . . . .  Yp-1 are such that 

(11) N~(r) = 1. 

We have to show that there exists u �9 D x such that N~(u) = N~(r)  and 

N~(u) = 1. As observed in the preceding section, this is easy if ~/ is in the 

subgroup generated by (~ or in the subgroup generated by ~. If it is not in any 

of these subgroups, then N~(c) = N~(c) and N~(yl) = N~(yi) = ~-i. Therefore, 

equation (11) yields 

N~(e) = ~ '+~"~+ +(~- '~ , -~.  
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Since p is odd, we have Nz(@q) -- ~q -- ~q;  therefore, for 

U ~ C~pq ( n l + 2 n 2 " l - ' ' ' + ( p - 1 ) n p - 1 )  

we have 

and 

= . . .  n , - 1  = g.(r) 

N~(u)  = N~(c) r -+ (p - , )~ - l )  = 1, 

as required. 

Suppose now tha t  z E L ~ satisfies (9). Then 

N,~(z.  D • ) = Nf~(z. D x) = 1 in L~• / D  • , 

Isr. J. Math .  

N~(v )  = N,~(z')N,~(z) -1 = ~-1 and Nz(v )  = Nz(z ' )Nf~(z)  -1 = 1. 

But  v cy~ 1 ~ - 1  ", . . . .  Yp-i  f~ s~  c C Q(@q) x a n d s o m e n l , . ,  n p _ l c Z ,  hence 

N~(v)  = CPCq (nlT2n2T'''+(p-1)np-') and N~(v)  = N~(c)y~ n~ . . . . .  pnp_~ 
~ p -  1 �9 

Therefore, we must  have n l  = - . .  --- nv=l -- 0, 

c p = ~-1 and N~(c) = 1. 

This is impossible, since the condition c p = ~ 1  implies N~(c) = c p. This 

completes the proof  in the case where p is odd. 

Suppose next p = 2. For convenience of notation,  denote K = K2,8,8, L = 

K2,4,s and F = K2,1,8, so tha t  L is the intermediate extension of codimension 2 

in K / F .  Let also n~ = L(xfL-1) = K4,4,s and F ~ = F(vfL--1) = K4,1,s. In order 

to show tha t  R2,s,s does not have proper ty  D(2), Proposi t ion 8 shows tha t  it 

suffices to prove tha t  there is no z E L~ such tha t  

(12) NL~/F~(Z) ---- --1 and NLU/L(Z ) = 1. 

We again give an explicit description of L~. For i = 1 , . . . ,  4, let 

x~ = ~ + ~+4 E L, A~ = #~ - p~+4 E K 

hence L e m m a  9 shows tha t  z .  D x = z ' .  D x for some z' E L ~ such tha t  N~(z ' )  = 

N~(z ' )  = 1. Let z' = zv with v E D x', then v satisfies 
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and let 

y~ = A~+IA~ -1 for i = 1, 2, 3. 

Since a4(A~) = -Ai ,  we have Yi �9 L. Clearly, 

K = Q ( x l , . . . ,  x4, )~1,.. . ,  "~4) = ~(Xl , """ ,  X4, Yl, Y2, Y3, )~1), 

= . . ,  =- A 2 L Q(Xl,. x4, yl,y=,y3, A~) and L ~ Q((4)(Xl,...,x4, yl,y=,y3, i). 

Let c~ = alL~ and let ~ be the non-trivial automorphism of L~/L. The orders of 
and ~ are 4 and 2 respectively, and these automorphisms generate GaI(L~/F). 

Straightforward computations show that 

and 

~(~) = x~+~ 

a(Yl) = y=y[l, 

Therefore, the ring 

for i = 1 , . . . , 4  (mod 4), 

. ( ~ )  = y~A~. 

q-i 4-1 •  
= ~ ' ~ ' ~ j L x ~ , . . . ,  ~4, y l  , y~ , y~ , ~] D 

is a unique factorizat ion domain which is preserved under a and ~ and whose 

field of fractions is L ~. 

We check condit ion (*): suppose r = cy~'y~2y~ 3 with c E Q((4) • and nl ,  n2, n3 

�9 Z, and ~ / � 9  Gal(L~/F) are such tha t  Nv(r) = 1. We have to find u �9 D • such 

tha t  N=(u) = N~(r) and N~(u) = 1. As noticed in the preceding section, this 

is s t raightforward if ~ is in the subgroup generated by a or in the subgroup 

generated by ~. If  ~ = a ~  or a3~, then 

g~(~) = Y,(c)  ( -1)  ~1+~3. 

Since ~ is the complex conjugation on Q(r we have N~(c) > 0, hence the 

relation N~(r) = 1 implies n l  + n3 is even and N~(c) = 1. We may  then choose 

u = c. I f  ~ = a2~,  then 

N ~ ( r )  = N ~ ( c ) ( - 1 ) ~ 2 + n 3 ( y l y ~ l y 3 ) ~ l + n 3 ,  

so the condit ion N~(r) = 1 implies n l  + n3 = 0, n2 + n3 even and N~(c) = 1. 
Again, we may  choose u --- c. 
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Lemma 9 now shows that  if z E L ~ satisfies (12), then there exists v C D • 

such that N ~ ( z v ) = N ~ ( z v )  = 1, i.e. 

N ~ ( v ) = - i  and N ~ ( v ) = l .  

n l  n2 n 3 Letting v = cy 1 Y2 Y3 with c E Q(~4) x and nl ,n2 ,n3  E Z, we have 

g a ( v ) = c 4 ( - 1 )  hi+n3 and N ~ ( v ) =  mr [ ~  2 h i  2n2 2n3 lvZ[cJYl Y2 Y3 �9 

Therefore, we must have nl = n2 = n3 = 0 and 5 4 = -1 .  This is impossible, 

since Q(~4) does not contain a primitive 8-th root of unity. | 

Combining Proposition 8 and Theorem 10, we obtain examples which show 

that  the cyclicity criterion of [3] for biquaternion algebras does not generalize to 

algebras of higher degree. Corollary 5.11 of [3] states: Let A be a central simple 

F-algebra of degree 4 and exponent 2 and let L be a quadratic extension of  F 

contained in A. Suppose L can be embedded in some cyclic extension K / F of  

degree 4. The algebra A is split by such a cyclic extension i f  and only i f  it is 

isomorphic to the corestriction COrL/F(Q) of some quaternion algebra Q over L. 

The "only if" direction is easy to generalize: if A is a cyclic algebra of exponent 

p (prime) and degree pn: 

A = (K /F ,  a, a) 

and if L denotes the intermediate extension of codimension p in K / F ,  then by 

[5, Theorem 30.10], 

A p = ( L / F , a , a )  in Br(F),  

hence the condition that  A has exponent p implies a = NL/F(g) for some g E L • . 

Then 
p n - 1  

A = c o r L / F ( g / L , a  ,~) in Sr(F) .  

However, Brauer algebras yield examples which show that the "if" direction does 

not generalize to algebras of degree p2 and exponent p if p is odd, nor to algebras 

of degree 8 and exponent 2, as we now show. 

Suppose first p is odd. With the notation of the preceding section, Theorem 10 

shows that  the algebra Rq,p2,pq = (Kq,p2pq, o', ~q) does not satisfy property D(p), 

hence Proposition 8 shows that  the symbol algebra 

A~p(t,~q)Kq,l,pq((t)) 
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is not split by any extension of degree p of Kq,p,pq((t)) which is cyclic over 

Kq,l,pq((t)). Nevertheless, since R~,p2,pq has exponent p, by [7, Theorem 7.3.8], 

(q is a norm from K • hence A;p(t,(q)Kq,l,pq((t)) is Brauer-equivalent to the 

corestriction of a symbol over Kq,p,pq((t)). 

For p = 2, Theorem 10 shows that R2,8,8 = (K2,s,s/K2,1,s,a,-1) does not 

satisfy property D(2), hence Proposition 8 shows that the quaternion algebra 

(t, - 1) K2,1,8 ((t)) 

is not split by any quadratic extension of K2,4,s((t)) which is cyclic over 

K2j,s((t)).  This quaternion algebra is Brauer-equivalent to the corestriction 

of some quaternion algebra over K2,4,s((t)) however, since the fact that  R2,s,8 

has exponent 2 implies that - 1  is a norm from/(2,4,8. 

7. Indecomposable algebras 

In this last section, we show how property D(p) relates to more general decom- 

position properties, and use Brauer algebras to produce indecomposable division 

algebras of prime exponent. 

We first review the general construction, which is explained in still greater 

generality in [7, w Let p be a prime and 

R = (K/F,  a, a) 

be a cyclic algebra of degree p2. Suppose F contains a primitive p-th root of 

unity ~p. Let L be the intermediate subfield of codimension p in K, so 

K =- L(5) 

for some 5 E K such that  aP(5) = r As in Lemma 7, we have a(5) = #5 for 

some # E L• Write 
p2--1 

R =  ~ K . z  i 
i=0 

where z p2 = a and zkz -1 = a(k) for k E K. Let R0 denote the (commutative) 

subring of R generated by L and zP: 

p--1 

no = ~ L .  (zP) ' = L[z p] = n( ~r~). 
i=O 
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We assume throughout  Ro is a field, which simply means a ~ L • 

Let A1, A2 be independent commuting indeterminates over F.  In R(A1, A2) = 

R | F(A1, A2) we consider the elements 

n n 
6 ~  z ~  a ~  = z  ~ 

and we let 

F ~ = F(A p, AP), L ~ = L(APl, AP), K ~ = L~ 

We extend a to K(A1,A2) by letting A1,A2 invariant and consider the cyclic 

algebra 
p2--1  

R ~ = ( K O / F ~ , a , a  ~ = ( ~  K ~  z ~ 
i----0 

which is denoted by R' in [7, p. 252]. Proposition 7.3.21 of [7] shows that R ~ is a 

division algebra of degree pn and exponent dividing the exponent of R (provided 

R is not split). 

PROPOSITION 11: IY R ~ decomposes into a tensor product  of  two subalgebras 

of  degree p, then R has property D(p).  

Proo~ Proposition 7.3.26 of [7] shows that if R* decomposes, then 

z p = f Nl%/F(zp)(r) 

for some f E F • and some r E R~. Letting T denote the automorphism of R o / L  

such that  T(Z p) = r p, we then have 

~p = T(zP)z -p = NRo/F(zp)(T(r)r-1).  

Therefore, the element x = v(r )r  -1 E R~ satisfies 

NRo/F(zp)(X ) = ~p and NRo/L(X) = 1, 

hence Proposition 8 shows that R satisfies property D(p). (In the notation of 

that  proposition, R0 = L~ and F ( z  p) = F~.) | 

Remark:  The converse of Proposition 11 also holds. 

COROLLARY 12: Let  q be a power of  p, with q >_ p, and let Rq,p2,pq denote 

the Brauer algebra constructed in the preceding section. I[ p is odd, the Mgebra 

R ~ is an indecomposable division algebra o[ degree p2 and exponent  p. q~p2 pq 
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Proo~ Indecomposability of R r readily follows from Theorem 10 and q,p2 pq 

Proposition 11. The other properties follow from general results about the ~ 

construction. II 

Remark: Corollary 12 is already announced in [6, Theorem 4] and [7, Theo- 

rem 7.3.28]. The proofs given there contained gaps, however. Specifically, the 

proof of Proposition 5 in [6] is not sufficient, because (in the notation of that 

paper) the automorphism a does not necessarily preserve the rings H, H1. Simi- 

larly, the proof of Proposition 7.3.27 in [7] uses the hypothesis that f l  is relatively 

prime to N(h2) to derive that it divides a2, whereas it is only assumed that f l  is 

relatively prime to h2. We are indebted to A1 Sethuraman and Adrian Wadsworth 

for pointing out these gaps to us. Note however that Proposition 7.3.27 of [7] is 

correct as stated; a proof can be given on the same lines as Lemma 9 above. 

On the other hand, we do not know how to patch the gaps in the proofs of the 

noncrossed product results ([6, Theorem 4(ii)], [7, Theorem 7.3.30]). Another 

open question is whether the Brauer algebra Rq,p2,pq itself is indecomposable (as 

opposed to the generic construction Rq,pLpq based on it). 

The indecomposable algebras Rq,p2,pq have the property that the algebraic 

closure of Q in their center is Q(~q). However, an ultraproduct construction also 

yields examples where the base field contains all the pn-th roots of unity for all 

n: let I = l~l -. {0} and, for i E I, let 

Di = Rpl,p2,p,+l. 

Let $" be any ultrafilter on I containing the cofinite filter. The ultraproduct 

D=IID,/* 
iEI  

is a ring such that any elementary sentence holding in almost all D~ holds in D 

(see [7]). In particular, D is a division algebra; its degree is p2 since this con- 

dition is determined by the standard polynomial identity $2p2 (and nonidentity 

$2p2_1) , which is an elementary sentence. Since decomposability is elementary, 

D is indecomposable. Moreover, for all integers n, the center of D~ contains a 

primitive pn-th root of unity if i _> n, hence the center of D contains a primitive 

p'~-th root of unity for all n. 
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